Hyperreactivity of junctional adhesion molecule A-deficient platelets accelerates atherosclerosis in hyperlipidemic mice.

نویسندگان

  • Ela Karshovska
  • Zhen Zhao
  • Xavier Blanchet
  • Martin M N Schmitt
  • Kiril Bidzhekov
  • Oliver Soehnlein
  • Philipp von Hundelshausen
  • Nadine J Mattheij
  • Judith M E M Cosemans
  • Remco T A Megens
  • Thomas A Koeppel
  • Andreas Schober
  • Tilman M Hackeng
  • Christian Weber
  • Rory R Koenen
چکیده

RATIONALE Besides their essential role in hemostasis, platelets also have functions in inflammation. In platelets, junctional adhesion molecule (JAM)-A was previously identified as an inhibitor of integrin αIIbβ3-mediated outside-in signaling and its genetic knockdown resulted in hyperreactivity. OBJECTIVE This gain-of-function was specifically exploited to investigate the role of platelet hyperreactivity in plaque development. METHODS AND RESULTS JAM-A-deficient platelets showed increased aggregation and cellular and sarcoma tyrosine-protein kinase activation. On αIIbβ3 ligation, JAM-A was shown to be dephosphorylated, which could be prevented by protein tyrosine phosphatase nonreceptor type 1 inhibition. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe(-/-)) background were fed a high-fat diet. After ≤12 weeks of diet, trJAM-A(-/-)apoe-/- mice showed increased aortic plaque formation when compared with trJAM-A(+/+) apoe(-/-) controls, and these differences were most evident at early time points. At 2 weeks, the plaques of the trJAM-A(-/-) apoe(-/-) animals revealed increased macrophage, T cell, and smooth muscle cell content. Interestingly, plasma levels of chemokines CC chemokine ligand 5 and CXC-chemokine ligand 4 were increased in the trJAM-A(-/-) apoe(-/-)mice, and JAM-A-deficient platelets showed increased binding to monocytes and neutrophils. Whole-blood perfusion experiments and intravital microscopy revealed increased recruitment of platelets and monocytes to the inflamed endothelium in blood of trJAM-A(-/-) apoe(-/-)mice. Notably, these proinflammatory effects of JAM-A-deficient platelets could be abolished by the inhibition of αIIbβ3 signaling in vitro. CONCLUSIONS Deletion of JAM-A causes a gain-of-function in platelets, with lower activation thresholds and increased inflammatory activities. This leads to an increase of plaque formation, particularly in early stages of the disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deletion of junctional adhesion molecule A from platelets increases early‐stage neointima formation after wire injury in hyperlipidemic mice

Platelets play an important role in the pathogenesis of vascular remodelling after injury. Junctional adhesion molecule A (JAM-A) was recently described to regulate platelet activation. Specific deletion of JAM-A from platelets resulted in increased reactivity and in accelerated progression of atherosclerosis. The aim of this study was to investigate the specific contribution of platelet-derive...

متن کامل

Endothelial junctional adhesion molecule-a guides monocytes into flow-dependent predilection sites of atherosclerosis.

BACKGROUND Junctional adhesion molecule (JAM)-A expressed in endothelial, epithelial, and blood cells can regulate permeability and leukocyte extravasation. Atherosclerosis develops at sites of disturbed flow in large arteries, but the mechanisms guiding inflammatory cells into these predilection sites remain unknown. METHODS AND RESULTS To characterize cell-specific functions of JAM-A in ath...

متن کامل

Rapid Communication Importance of Junctional Adhesion Molecule-A for Neointimal Lesion Formation and Infiltration in Atherosclerosis-Prone Mice

Objective—Although junctional adhesion molecule-A (JAM-A) has recently been implicated in leukocyte recruitment on early atherosclerotic endothelium and after reperfusion injury, its role in neointima formation after arterial injury remains to be elucidated. Methods and Results—Here we show that the genetic deletion of JAM-A in apolipoprotein E–deficient (apoE / ) mice significantly reduced neo...

متن کامل

Importance of junctional adhesion molecule-A for neointimal lesion formation and infiltration in atherosclerosis-prone mice.

OBJECTIVE Although junctional adhesion molecule-A (JAM-A) has recently been implicated in leukocyte recruitment on early atherosclerotic endothelium and after reperfusion injury, its role in neointima formation after arterial injury remains to be elucidated. METHODS AND RESULTS Here we show that the genetic deletion of JAM-A in apolipoprotein E-deficient (apoE(-/-)) mice significantly reduced...

متن کامل

Importance of Junctional Adhesion Molecule-C for Neointimal Hyperplasia and Monocyte Recruitment in Atherosclerosis-Prone Mice

Objective—Although junctional adhesion molecule (JAM)-C has been implicated in the control of inflammatory leukocyte recruitment, its role in neointima formation after arterial injury has not been elucidated. Methods and Results—In apolipoprotein E–deficient (Apoe / ) mice fed an atherogenic diet, antibody blockade of JAM-C significantly reduced neointimal hyperplasia after wire injury of carot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 116 4  شماره 

صفحات  -

تاریخ انتشار 2015